3
Revista Matronas

Revista Matronas

ABRIL 2022 N° 1 Volumen 10

Steroid hormone profiles as of week 12 of pregnancy, and the development of a mathematical model to predict the week of delivery

Section: Originales

How to quote

Alonso Marín S, Cáceres Ramos S, Vélez Serrano D, Sanz San Miguel L, Silván Granado G, Illera del Portal MJ, Illera del Portal JC. Perfiles hormonales esteroideos a partir de la semana 12 de gestación y el desarrollo de un modelo matemático para la predicción de la semana de parto. Matronas Hoy 2022; 10(1):6-13.

Authors

1 Silvia Alonso Marín, 2 Sara Cáceres Ramos, 3 Daniel Vélez Serrano, 4 Luis Sanz San Miguel, 5 Gema Silván Granado, 5 María José Illera del Portal, 5 Juan Carlos Illera del Portal

Position

1 Matrona. Doctora. Atención Primaria OSI Uribe. Osakidetza. Vizcaya. 2 Profesor ayudante doctor. Departamento de fisiología. Facultad de Veterinaria. Universidad Complutense de Madrid. 3 Profesor ayudante doctor. Departamento de estadística e investigación operativa. Universidad Complutense de Madrid. 4 Profesor asociado. Departamento de estadística e investigación operativa. Universidad Complutense de Madrid. 5 Catedrática/o del departamento de fisiología. Facultad de Veterinaria. Universidad Complutense de Madrid.

Contact email: silvalon@ucm.es

Abstract

Introduction: the correct interaction between sex hormones and glucocorticoids during pregnancy is determining for an adequate foetal development, the initiation of labor mechanisms, as well as preparation for extrauterine life. Many studies have focused on the hormonal mechanisms of labor; however, the prediction of the delivery date remains an unsolved challenge.

Objective: determining hormone patterns through measurement of estrone sulphate, estriol, progesterone and cortisol during the second and third trimesters of pregnancy, in order to develop a mathematical model for the prediction of the start of labor as of Week 37 of pregnancy.

Methodology: the levels of estrone sulphate, estriol, progesterone and cortisol were analysed in saliva samples from 106 women collected from Week 12 of pregnancy until the week of delivery through the enzyme immunoassay (EIA) technique. A predictive random forest-type model was applied on the hormone levels obtained, which allows to predict the week of delivery.

Results: during the second trimester, the elevation of the hormones studied stood out during the weeks 16,18 and 23. Regarding the third trimester, all hormones increased. These analyses allowed to develop a random forest-type predictive model which, applied to the results obtained from Week 34, allowed to predict whether the woman would give birth on the week following the last saliva sample as of Week 37, with a 79.83% accuracy.

Conclusions: the hormone elevations of the second trimester seem to be associated with important milestones in foetal development. Hormone analyses in the third trimester allow to determine an approximate date of delivery through the mathematical model developed.

Keywords:

steroid hormones; labor prediction; mathematical model; pregnancy

Versión en Español

Título:

Perfiles hormonales esteroideos a partir de la semana 12 de gestación y el desarrollo de un modelo matemático para la predicción de la semana de parto

Artículo completo no disponible en este idioma / Full article is not available in this language

Bibliography

  1. Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids during pregnancy: Maternal, placental and fetal synthesis. Annales D’Endocrinologie. 2016; 77:82-9.
  2. Johnston ZC, Bellingham M, Filis P, Soffientini U, Hough D, Battacharya MS, et al. The human fetal adrenal produces cortisol but not detectable aldosterone throughout the second trimester. BMC Med. 2018; 16:23.
  3. Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018; 8:e00920.
  4. Pařízek A, Koucký M, Dušková M. Progesterone, inflammation and preterm labor. J. Steroid Biochem. Mol. Biol. 2014; 139:159-65.
  5. Falah N, Torday J, Quinney SK, Hass DM. Estriol review clinical application and potential biomedical importance. Clin Res Trials. 2015; 1:29-33.
  6. Vrachnis N, Malamas FM, Sifakis S, Tsikouras P, Iliodromiti Z. Inmune aspects and myometrial actions of progesterone and CRH in labour. Clin. Dev. Inmunol. 2012; 937618.
  7. Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids during pregnancy: maternal, placental and fetal synthesis. Annales d ́ Endocrinologie 2016; 77:82-9.
  8. Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, et al. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol. 2017; 172:207-21.
  9. Keelan J. Intrauterine infammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J. Reprod. Immunol, 2018; 125:89-99.
  10. Walsh K, McCormack CA, Webster R, Pinto A, Lee S, Feng T, Krakovsky S, et al. Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. PNAS. 2019; 116(48):23996-4005.
  11. Xing Y, Lerario AM, Rainey W, Hammer GD. Development of adrenal cortex zonation. Endocrinol Metab Clin North Am. 2015; 44(2):243-74.
  12. Groeneweg FL, Karst H, de Kloet ER, Joëls M. Rapid non genomic effects of corticoesteroids and their role in the central stress response. J Endocrinol 2011; 209:153-67.
  13. Howland MA, Sandman CA, Glynn LM. Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab. 2017; 12(5):312-39.
  14. Johnston ZC, Bellingham M, Filis P, Soffientini U, Hough D, Battacharya MS, et al. The human fetal adrenal produces cortisol but not detectable aldosterone throughout the second trimester. BMC Med. 2018; 16:23.
  15. Narasaka T, Suzuki T, Moriya T, Sasano H. Temporal and spatial distribution of corticosteroidogenic enzymes immunoreactivity in developing human adrenal. Mol Cell Endocrinol. 2001; 174:111-20.
  16. Bolten MI, Wurmser H, Buske-Kirschbaum A, Papoušek M, Pirke KM, Hellhammer D. Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch Womens Ment Health. 2011; 14:33-41.
  17. Hohwü L, Henriksen TB, Grønborg TK, Hedegaard M, Sørensen TLA, Obel C. Maternal salivary cortisol levels during pregnancy are positively associated with overweight children. Psychoneuroendocrinol. 2015; 83:143-52.
  18. Gran-Beuttler M, Glynn LM, Salisbury AL, Davis EP, Holliday C, Sandman CA. Development of fetal movement between 26 and 36-weeks gestation in response to vibro-acoustic stimulation. Front Psychol. 2017; 2:350.
  19. Akkaya H, Büke B. A frequently asked question: Is it normal not to feel my baby movements yet? J Chin Mec Assoc. 2018; 81:742-6.
  20. Torres Martí JM, Melero López A, López González MA. Consideraciones generales y concepto de edad perinatal. El feto en los distintos meses del embarazo. Tratado de ginecología y obstetricia. 2ª ed. Madrid: Editorial Médica Paramericana; 2015.
  21. Moore KL. Periodo fetal: desde la novena semana hasta el nacimiento. Embriología clínica. 10ª ed. Madrid: Elsevier España; 2016.
  22. Di Pietro J, Kivlighan KT, Laudenslager ML, Costigan KA. Fetal motor activity and maternal cortisol. Dev Psychobiol. 2009; 51:505-12.
  23. Fagard J, Esseily R, Jacquey L, O’Regan K, Somogyi E. Fetal origin of sensorimotor behavior. Front Neurorobot. 2018; 12:23.
  24. Bellieni C. New insights into fetal pain. Semin Fetal Neonatal Med. 2019; 24(4):101100.
  25. Li XQ, Zhu P, Myatt L, Sun K. Roles of glucocorticoids in human parturition: a controversial fact? Placenta 2014; 35:291-6.
  26. Kaludjerovic J, Ward WE. The interplay between estrogen and fetal adrenal cortex. J Nutr Metab; 2012: 837901.
  27. Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, et al. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol, 2017; 172:207-21.
  28. Gibson DA, Foster PA, Simitsidellis I, Critchley H, Kelepouri O, Collins F, Saunders P. Sulfation pathways: A role for steroid sulphatase in intracrine regulation of endometrial decidualisation. J Molec Endocrinol; 2018, 61(2):57-65.
  29. Vrachnis N, Malamas FM, Sifakis S, Tsikouras P, Iliodromiti Z. Inmune aspects and myometrial actions of progesterone and CRH in labour. Clin Dev Inmunol; 2012, 2012:937618. Doi: http://doi.org/10.1155/2012/937618
  30. Condon JC, Hardy DB, Kovaric K, Mendelson CR. Upregulation of the progesterone receptor(PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol 2006, 20:764-75.
  31. Cunningham F, Kenneth JL, Bloom SL, Hauth JC, Rouse DJ, Spong CY. Williams obstetricia. 23ª ed. México DF: McGraw-Hill Interamericana, S.A; 2011.
  32. Menon R. Human fetal membranes at term: dead tissue or signalers of parturition? Placenta; 2016, 44:1-5.
  33. Golightly E, Jabbour HN, Norman JE. Endocrine inmune interactions in human parturition. Mol Cell Endocrinol. 2011; 335:52-9.
  34. Morsi A, DeFranco D, Witchel SF. The hypothalamic-pituitary-adrenal axis and the fetus. Horm Res Paediatr. 2018; 89:380-7.
  35. Moore KL, Persaud TVN, Mark G. Embriología clínica. 10ª ed. Madrid: Elsevier; 2016.
  36. Smith R. Parturition. N Engl J Med 2007; 356:3.
  37. Cunningham F, Kenneth JL, Bloom SL, Hauth JC, Rouse DJ, Spong CY. Williams obstetricia. 23ª ed. México DF: McGraw-Hill Interamericana, S.A.; 2011.
  38. Keelan J. Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J Reprod Inmunol 2018; 125:89-99.
  39. Ledingham MA, Thomson AJ, Greer IA, Norman JE. Nitric oxide in parturition. BJOG 2000; 107:581-93.
  40. Illera JC, Silvan G, Cáceres S, Carbonell MD, Martínez-Fernández L, Munro C, Casares M. Assessment of ovarian cycles in the African elephant (Loxodonta africana) by measurement of salivary progesterone metabolites. Zoo Biol. 2014; 33(3):245-9.
  41. Malley JD, Malley KG, Pajevic S. Statistical learning for biomedichal data. (Cambridge University Press, 2011.
  42. Zbir S, Rozenberg P, Gofnet F, Milcent, C. Cesarean delivery rate and stafing levels of the maternity unit. PLoS ONE 2018; 13(11):e0207379.
  43. Ashwal E, Melamed N, Hiersch L, Wiznitzer A, Yogev Y, Peled Y, et al. The incidence and risk factors for retained placenta afer vaginal delivery - a single center experience. J. Matern Fetal Neonatal Med. 2014; 27(18):1897-900.
  44. Jay A, Tomas H, Brooks F. In labor or in limbo? The experiences of women undergoing induction of labor in hospital: Findings of a qualitative study. Birth, 2018; 45:64-70.
  45. Rydahl E, Eriksen L, Juhl M. Efects of induction of labour prior to post-term in low-risk pregnancies: a systematic review. JBI Database Syst. Rev. Implement Rep 2019; 17(2):170-208.
  46. Lee KS, Ahn KH. Application of artifcial intelligence in early diagnosis of spontaneous preterm labor and birth. Diagnostics 2020; 10(9):733.