3
Revista Matronas

Revista Matronas

ABRIL 2014 N° 1 Volumen 2

Obesity, perinatal nutrition and epigenetics

Section: Aula

How to quote

Cordero P. Obesidad, nutrición perinatal y epigenética. Matronas hoy 2014; 2(1):41-9.

Authors

Paul Cordero

Position

Doctor en Farmacia. Departamento de Ciencias de la Alimentación y Fisiología. Facultad de Farmacia. Universidad de Navarra (Pamplona)

Contact email: pcordero@alumni.unav.es

Abstract

Obesity has been defined as the twenty-first century pandemic. Its increasing prevalence and associated disorders have prompted approaching obesity as a priority by Healthcare System. Furthermore, physiologic state in obesity during pregnancy is associated to a number of pregnancy problems both for the mother and for offspring appropriate development. Epidemiological studies have also reported that maternal nutritional state changes have an impact on newborn characteristics and on the risk for metabolic diseases in adulthood. Mechanisms involved in such processes can be explained by epigenetics, a key tool in gene expression regulation. Due to methodological difficulties and ethical implications when performing perinatal procedures, experimental animal models are the main tools to reach an understanding of mechanisms involved in it. Its main objective is to search for biomarkers associated to maternal diet as a diagnostic tool for risk recognition and adult diseases in offspring. In conclusion, not only are we what we eat, we are also what our mothers ate, through an effect that is passed to next generation. Reaching an appropriate weight for gestational age, and having a healthy diet and lifestyle during pregnancy and lactation help to promote offspring development and to reduce their risk for obesity and associates metabolic diseases.

Keywords:

pregnancy; malnutrition; maternal programming; DNA methylation; child obesity

Versión en Español

Título:

Obesidad, nutrición perinatal y epigenética

Artículo completo no disponible en este idioma / Full article is not available in this language

Bibliography

1. Haslam DW, James WP. Obesity. Lancet 2005; 366:1197-209.

2. Rubio MA, Salas-Salvadó J, Barbany M, Moreno B, Aranceta J, Bellido D et al. Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Rev Esp Obes 2007; 5:135-1475.

3. Salas-Salvado J, Rubio MA, Barbany M, Moreno B. SEEDO 2007 Consensus for the evaluation of overweight and obesity and the establishment of therapeutic intervention criteria. Med Clin (Barc) 2007; 128:184-196.

4. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012; 70:3-21.

5. Forja L, Petrina E, Barberia J. Complicaciones de la obesidad. An Sist Sanit Navar 2002; 25:117-126.

6. Obesidad y sobrepeso. Organización Mundial de la Salud OMS. [En línea] [fecha de acceso: 14 de abril de 2014]. URL disponible en: http://www.who.int/mediacentre/factsheets/fs311/es/ index.html

7. Global Database on Body Mass Index an interactive surveillance tool for monitoring nutrition transition. Organización Mundial de la Salud OMS. [En línea] [fecha de acceso: 14 de abril de 2014]. URL disponible en: http://apps.who.int/bmi/index.jsp

8. Ministerio de Sanidad, Servicios Sociales e Igualdad. Gobierno de España [En línea] [fecha de acceso: 14 de abril de 2014]. URL disponible en: http://www.msssi.gob.es/en/estadEstudios/ estadisticas/encuestaNacional/encuesta2006.html

9. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 2010; 362:485-493.

10. Heslehurst N, Ells LJ, Simpson H, Batterham A, Wilkinson J, Summerbell CD. Trends in maternal obesity incidence rates, demographic predictors, and health inequalities in 36,821 women over a 15-year period. Bjog 2007;  114:187-194.

11. Vahratian A. Prevalence of overweight and obesity among women of childbearing age: results from the 2002 National Survey of Family Growth. Matern Child Health J 2009; 13:268-273.

12. Leung TY, Leung TN, Sahota DS, Chan OK, Chan LW, Fung TY et al. Trends in maternal obesity and associated risks of adverse pregnancy outcomes in a population of Chinese women. Bjog 2008; 115:1529-37.

13. Sahu MT, Agarwal A, Das V, Pandey A. Impact of maternal body mass index on obstetric outcome. J Obstet Gynaecol Res 2007; 33:655-659.

14. Campion J, Milagro FI, Martínez JA. Individuality and epigenetics in obesity. Obes Rev 2009; 10:383-392.

15. Poston L, Harthoorn LF, Van Der Beek EM. Obesity in pregnancy: implications for the mother and lifelong health of the child. A consensus statement. Pediatr Res 2011; 69:175-180.

16. Rodríguez Bernal CL, Rebagliato M, Iñiguez C, Vioque J, Navarrete Muñoz EM, Murcia M et al. Diet quality in early pregnancy and its effects on fetal growth outcomes: the Infancia y Medio Ambiente (Childhood and Environment) Mother and Child Cohort Study in Spain. Am J Clin Nutr 2010; 91:1659-66.

17. Ayerza Casas A, Rodríguez Martínez G, Samper Villagrasa MP, Murillo Arnal P, Álvarez Sauras ML, Moreno Aznar LA et al. Nutritional characteristics of newborns of overweight and obese mothers. An Pediatr (Barc) 2011; 75:175-181.

18. Smith J, Cianflone K, Biron S, Hould FS, Lebel S, Marceau S et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab 2009; 94:4275-83.

19. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol 2007; 19:1-19.

20. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006;  82:485-491.

21. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45. Heart 2000; 84:595-598.

22. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. Bjog 2013; 120:548-553.

23. Shi Z, Zhang C, Zhou M, Zhen S, Taylor AW. Exposure to the Chinese famine in early life and the risk of anaemia in adulthood. BMC Public Health 2013; 13:904.

24. Wang PX, Wang JJ, Lei YX, Xiao L, Luo ZC. Impact of fetal and infant exposure to the Chinese Great Famine on the risk of hypertension in adulthood. PLoS One 2012; 7: e49720.

25. González Zapata LI, Álvarez-Dardet Díaz C, Nolasco Bonmati A, Pina Romero JA, Medrano MJ. Famine in the Spanish civil war and mortality from coronary heart disease: a perspective from Barker's hypothesis. Gac Sanit 2006; 20:360-367.

26. Ekelund U, Ong KK, Linne Y, Neovius M, Brage S, Dunger DB et al. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J Clin Endocrinol Metab 2007; 92:98-103.

27. Ohlsson A, Shah PS. Effects of the September 11, 2001 disaster on pregnancy outcomes: a systematic review. Acta Obstet Gynecol Scand 2011; 90:6-18.

28. Behl M, Rao D, Aagaard K, Davidson TL, Levin ED, Slotkin TA et al. Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a national toxicology program workshop review. Environ Health Perspect 2013; 121:170-180.

29. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007; 27:363-388.

30. Bird A. Perceptions of epigenetics. Nature 2007; 447:396-398.

31. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102:10604-9.

32. Cordero P, Milagro F, Campión J, Martínez JA. Nutritional epigenetic: a key piece in the puzzle of obesity. Rev Esp Obes 2010; 8:10-20.

33. Milagro FI, Campión J, Cordero P, Goyenechea E, Gómez-Uriz AM, Abete I et al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. Faseb J 2011; 25:1378-89. 

34. Thaler R, Karlic H, Rust P, Haslberger AG. Epigenetic regulation of human buccal mucosa mitochondrial superoxide dismutase gene expression by diet. Br J Nutr 2009; 101:743-749.

35. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem 2011; 67:129-139.

36. Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 2002; 3:274-293.

37. Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293:1074-80.

38. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006; 5:37-50.

39. McMullen S, Mostyn A. Animal models for the study of the developmental origins of health and disease. Proc Nutr Soc 2009; 68:306-320.

40. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG. Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 2006; 44:401-406.

41. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond) 2008; 32:1373-9.

42. Cordero P, Milagro FI, Campión J, Martínez JA. Maternal Methyl Donors Supplementation during Lactation Prevents the Hyperhomocysteinemia Induced by a High-Fat-Sucrose Intake by Dams. Int J Mol Sci 2013; 14:24422-37.

43. Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 2009; 150:4999-5009.

44. Paternain L, Batlle MA, De la Garza AL, Milagro FI, Martínez JA, Campión J. Transcriptomic and epigenetic changes in the hypothalamus are involved in an increased susceptibility to a high-fat-sucrose diet in prenatally stressed female rats. Neuroendocrinology 2012; 96:249-260.

45. Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG et al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1023-9.

46. Jousse C, Parry L, Lambert-Langlais S, Maurin AC, Averous J, Bruhat A et al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. Faseb J 2011; 25:3271-8.

47. Zheng S, Rollet M, Pan YX. Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring. J Nutr Biochem 2012; 23:1064-71.

48. Burdge GC, Hoile SP, Uller T, Thomas NA, Gluckman PD, Hanson MA et al. Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS One 2011; 6:e28282.

49. Li CC, Cropley JE, Cowley MJ, Preiss T, Martin DI, Suter CM. A sustained dietary change increases epigenetic variation in isogenic mice. PLoS Genet 2011; 7:e1001380.

50. Krause BJ, Costello PM, Muñoz-Urrutia E, Lillycrop KA, Hanson MA, Casanello P. Role of DNA methyltransferase 1 on the altered eNOS expression in human umbilical endothelium from intrauterine growth restricted fetuses. Epigenetics 2013; 8:944-952.

51. Drake AJ, McPherson RC, Godfrey KM, Cooper C, Lillycrop KA, Hanson MA et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol (Oxf) 2012; 77:808-815.

52. Guenard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 2013; 110:11439-44.

53. Cooper WN, Khulan B, Owens S, Elks CE, Seidel V, Prentice AM et al. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. Faseb J 2012; 26:1782-90.

54. Khulan B, Cooper WN, Skinner BM, Bauer J, Owens S, Prentice AM et al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum Mol Genet 2012; 21:2086-101.

55. San Cristóbal R, Milagro FI, Martínez JA. Future challenges and present ethical considerations in the use of personalized nutrition based on genetic advice. J Acad Nutr Diet 2013; 113:1447-54.